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In the monoidal categories approach to quantum theory [?, ?] Hopf algebras [?] have a central
role in the formulation of complementary observables [?]. In this setting, a quantum observable
is represented as special commutative †-Frobenius algebra; a pair of such observables are called
strongly complementary if the algebra part of the first and the coalgebra part of the second jointly
form a Hopf algebra. In abstract form, this combination of structures has been studied under the
name “interacting Frobenius algebras” [?] where it is shown that relatively weak commutation
rules between the two Frobenius algebras produce the Hopf algebra structure. From a different
starting point Bonchi et al [?] showed that a distributive law between two Hopf algebras yields
a pair of Frobenius structures, an approach which has been generalised to provide a model of
Petri nets [?]. Given the similarity of the two structures it is appropriate to consider both as
exemplars of a common family of Hopf-Frobenius algebras.

In the above settings, the algebras considered are both commutative and cocommutative.
However more general Hopf algebras, perhaps not even symmetric, are a ubiquitous structure
in mathematical physics, finding application in gauge theory [?], condensed matter theory [?],
quantum field theory [?] and quantum gravity [?]. We take the first steps towards generalising
the concept of Hopf-Frobenius algebra to the non-commutative case, and opening the door to
applications of categorical quantum theory in other areas of physics.

Loosely speaking, a Hopf-Frobenius algebra consists of two monoids and two comonoids such
that one way of pairing a monoid with a comonoid gives two Frobenius algebras, and the other
pairing yields two Hopf algebras, with the additional condition that antipodes are constructed
from the Frobenius forms. This schema is illustrated in Figure ??.

Fundamental to the concept of a Hopf-Frobenius algebra is a particular pair of morphisms
called an integral and a cointegral. We show that when these morphisms are ’compatible’ in a
particular sense, they produce structure similar to a Hopf-Frobenius algebra. It is from this that
we produce necessary and sufficient conditions to extend a Hopf algebra to a Hopf-Frobenius
algebra in a symmetric monoidal category. It was previously known that in FVectk, the category
of finite dimensional vector spaces, every Hopf algebra carries a Frobenius algebra on both
its monoid [?] and its comonoid [?, ?]; in fact we show that every Hopf algebra in FVectk is
Hopf-Frobenius. We are therefore able to find many examples of Hopf-Frobenius algebras that
are not commutative or cocommutative. Finally, due to the fact that every Frobenius algebra is
self dual, in a compact closed category we may find a natural isomorphism between the algebra
and its dual. We use this isomorphism to construct a Hopf algebra on H⊗H that is isomorphic
to the Drinfeld double.
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Figure 1: The elements of a Hopf-Frobenius algebra
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